|
Link to the Homepage: Data Science
| |
Bishop, Christopher M Pattern recognition and machine learning Springer 2009 | |
Brunton, Steven L. and Kutz, Nathan Data-driven science and engineering: Machine learning, dynamical systems, and control Cambridge 2019 | |
Géron, Aurélien Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems O'Reilly 2019 | |
Goodfellow, Ian Deep learning MIT 2016 | |
Hastie, Trevor; Tibshirani, Robert and Friedman, Jerome H. The elements of statistical learning Springer 2011 | |
James, Gareth et al. An introduction to statistical learning: With applications in R Springer 2021 | |
Murphy, Kevin P. Machine learning: A probabilistic perspective MIT 2012 | |
Russell, Stuart and Norvig, Peter Artificial intelligence: A modern approach Pearson 2021 | |
Spiegelhalter, David J. The art of statistics: Learning from data Pelican 2019 | |
Sutton, Richard S. and Barto, Andrew Reinforcement learning: An introduction MIT 2018 | |
Wintjen, Marc and Vlahutin, Andrew Practical data analysis using Jupyter notebook Packt 2020 |